
Game Engine Programming

GMT Master Program
Utrecht University

Dr. Nicolas Pronost

Course code: INFOMGEP
Credits: 7.5 ECTS

Lecture #1

Part I: Introduction to C++

• Extension of C language

– Bjarne Stroustrup (Bell Labs, 80’s) ‘C with classes’

• Open programming language

– No owner, no central website, no official
documentation except the ISO standard (1998)

– Code compiled for a specific platform

– Recent compilers have a high conformity with the
standard but

• A valid C++ code may not compiled if it uses advanced
features not implemented in the compiler

• An invalid C++ code may compiled with non rigorous
compilers

3

Introduction to C++

• Open source

– GCC, Open Watcom ...

• Commercial products

– Borland, Microsoft, SGI, Sun ...

• The standard specifies only the language
(syntax) and its library

– Compiler specific versions of network
management, multi-task, UI, graphics ...

– Compatibility / portability issues

4

Compilers

• Low-level manipulation of data

– Pointer, memory usage ...

• Higher modeling functionalities

– Reference, exception, class, template ...

• Programming techniques

– OO, procedural and generic

• Suitable for large programs with high

performance requirements

5

What’s inside?

• Java

– Compiled (vs. interpreted), separated

declaration and definition, memory management

• C#

– Multiple inheritance, separated declaration and

definition, lower-level control

• Which language to use?

– In industry 90% of the decision from financial

issues

6

C++ vs. other languages

• C++ is still an industry standard
– Many games are programmed in C++ or use (prior)

libraries written in C++

• Mostly, game companies use C++ for building their
games
– Object lifetime and memory management is often

necessary

– C++ allows for both high- and low-level coding

– A lot of libraries and code is available

• Java is rarely used for games
– But a lot of development is going on for Java3D,

jMonkey engine and Java Scene Graphs

• C# is used in combination with XNA to produce Xbox
games, Flash technology in casual games etc.

7

And in game engines?

Lecture #1

Part II: C++ basics

9

Game Over!

#include <iostream>

using namespace std;

int main(int argc, char* argv[]) {

 // This program prints Game Over!

 cout << "Game Over!" << endl;

 return 0;

}

• The directive loads the

iostream library used for printing and

reading data from the keyboard

• Comments are introduced by // (one line) or

by /* and */ (multi-lines)

• The simply means that we

will directly use functions/objects from the

package called “std”

10

Game Over!

#include <iostream>

using namespace std;

• The parameter argc gives the number of

arguments (including the name of the
program) and argv gives them in an array

– argc and argv are optional

• The cout instruction prints data in the

standard output (console)

• The returned value of the main program is

– 0 if the program terminates normally

– Non-zero for abnormal termination

Game Over!

• C++ has 5 primitive types

– int, float, double, char and bool (true / false)

• C++ has no String class

– Use array of ‘char’ or STL string (next lecture)

• In many libraries, ‘NULL’ is defined as macro

for ‘0’ to increase readability

Primitive types

• Normal variable

• Reference to a variable (address of)

• Pointer to a variable (value pointed by)

13

Using variables

int a;

int a = 2;

int & b = a; // reference

int a = 2;

int * c = & a; // pointer

• To convert a value to a different type

• careful use as C++ does not generate

compiler error

14

Explicit casting

int x = 5; int y = 2; double z = 5.0;

double a = x / y; // a equals 2

double b = z / y; // b equals 2.5

double c = double(x)/double(y); // c equals 2.5

• Assignment to set a value to a variable
– = not the math equal and usually does not

create compile-time error!

• Classical arithmetical operations
– +, -, /, *,%

• Compound assignments
– +=, -= ...

– value += increase means value = value + increase

• Increase, decrease
– ++ and --

– a++  a+=1  a = a +1
• a++ returns the value before increment

• ++a returns the value after increment

15

Operators

Relational and logical operators
operator description

!x Returns false if x is true and vice-versa

x < y Returns true if x is less than y

x > y Returns true if x is greater than y

x <= y Returns true if x is less than or equal to y

x >= y Returns true if x is greater than or equal to y

x == y Returns true if x and y are equal

x != y Returns true if x and y are not equal

x && y Returns true only if both x and y are true

x ^^ y Returns true if either x or y is true (not both)

x || y Returns true if one of x or y is true (or both)

• Conditional structure
– the if-else statement

• Iteration structure
– the while loop

– the do-while loop

– the for loop

• Jump structure
– the break statement

– the continue statement

– the goto statement

• Selective structure
– the switch statement

17

Control structures

• To execute a block only if a condition is

fulfilled [otherwise execute another block]

• Example

18

The if-else statement

if (condition) {block1;} [else {block2;}]

if (player_number > 0) {

 InitializeGameForPlayers(player_number);

 StartGame();

}

else WaitForMorePlayers();

• To repeat a block while a condition is

fulfilled

• Example

19

The while loop

while (condition) {block;}

while (player_number <= 0) {

 player_number = GetMorePlayers();

}

• Same as while loop except that the condition

is evaluated after the execution of the block

• Example

20

The do-while loop

do {block;} while (condition);

do {

 player_number = GetMorePlayers();

}

while (player_number <= 0);

• To repeat a block a certain number of times

• Example

21

The for loop

for ([initialization]; condition; [statement]) {block;}

cout << “Respawn in 10 seconds: ”;

for (int n = 10; n > 0; n--) {

 cout << n << “ ”;

 WaitOneSecond();

}

Respawn();

• To leave a loop even if the condition for its

end is not fulfilled

• Example

22

The brake statement

cout << “Respawn in 10 seconds: ”;

for (int n = 10; n > 0; n--) {

 cout << n << “ ”;

 WaitOneSecond();

 if (NeedToAbord()) {

 cout << "countdown aborted!“ << endl;

 break;

 }

}

Respawn();

• To skip the rest of the block causing the

jump to the start of the next iteration

• Example

23

The continue statement

cout << “Respawn in 10 seconds: ”;

for (int n = 10; n > 0; n--) {

 cout << n << “ ”;

 if (NeedToSkipThatSecond()) continue;

 else WaitOneSecond();

}

Respawn();

• To make an absolute jump to another point

in the program identified by a label

– the label must be located in the current function

• Example

24

The goto statement

cout << “Respawn in 10 seconds: ”;

int n = 10;

loop:

cout << n << “ ”;

n--;

if (n>0) goto loop;

Respawn();

• To check several possible constant values

for an expression and execute blocks

• Example

25

The switch statement

switch (option) {

 case 'a':

 case 'b':

 case 'c':

 cout << "Normal menu option" << endl;

 ExecuteOption(option);

 break;

 case '?':

 cout << "Help option" << endl;

 ShowHelp();

 break;

 default:

 cout << "Invalid option!" << endl;

}

• Variables are accessible in the block in

which they are defined

26

Scope

if (x == 12) {

 double z = 48.7;

}

cout << z << endl; // output?

for (int i = 0; i < 10; i++) {

 cout << i << endl;

}

cout << i << endl; // output?

• Using the C++ iostream library

• Print on the standard output (screen)

• Read from the standard input (keyboard)

27

Standard Input / Output

#include <iostream>

using namespace std;

cout << “Welcome ” << PlayerName << endl;

int PlayerAge;

cout << “Please enter your age.”;

cin >> PlayerAge;

• cin extraction stops reading as soon as it

finds a blank space character

• Function getline to get the line in a string

28

Reading lines

#include <iostream>

#include <string>

using namespace std;

int main () {

 string Quest;

 cout << “What is your quest?” << endl;

 getline(cin, Quest);

 cout << Quest << “ is also my quest! Let’s team up!”;

 return 0;

}

• To perform extraction or insertion operations

to convert strings to numerical values and

vice-versa

29

Reading numerical values

#include <iostream>

#include <string>

#include <sstream>

using namespace std;

int main () {

 string inputString;

 int PlayerGold, PlayerSilver;

 cout << “How much gold and silver coins do you have?” << endl;

 getline(cin, inputString);

 stringstream(inputString) >> PlayerGold >> PlayerSilver;

 cout << “Can you give me ” << PlayerGold / 2 << “ gold coins?”;

 return 0;

}

• To read a file

30

File Input / Output

#include <iostream>

#include <fstream>

#include <string>

using namespace std;

int main() {

 string line;

 ifstream myfile("GameSaved.txt");

 if (myfile.is_open()) { // accessing file?

 while (!myfile.eof()) { // parsing file

 getline(myfile,line); // reading line-by-line

 cout << line << endl;

 }

 myfile.close();

 }

 else cout << "Unable to open file";

 return 0;

}

• To write a file

31

File Input / Output

#include <iostream>

#include <fstream>

using namespace std;

int main() {

 int PlayerLifes = 3;

 ofstream myfile("GameSaved.txt");

 if (myfile.is_open()) { // accessing file?

 myfile << “Game saved file” << endl;

 myfile << “Current lifes ” << PlayerLifes << endl;

 myfile.close();

 }

 else cout << "Unable to open file";

 return 0;

}

• A function is a group of statements that is

executed when it is called from some point

of the program

– type is the type of the data returned by the

function

– name is the identifier of the function

– parameters (data type followed by an identifier)

act within the function as local variables

– block is the function's body

32

Functions

type name ([parameter1, parameter2, ...]) {block;}

33

Functions
#include <iostream>

using namespace std;

int subtraction (int a, int b) {

 int r;

 r = a - b;

 return r; // or return a - b;

}

int main() {

 int x = 5, y = 3, z;

 z = subtraction(7,2);

 cout << "The first result is " << z << '\n';

 cout << "The second result is " << subtraction(7,2) << '\n';

 cout << "The third result is " << subtraction(x,y) << '\n';

 z = 4 + subtraction (x,y);

 cout << "The fourth result is " << z << '\n';

 return 0;

}

• Functions with no parameters and/or no

return type (procedures)

34

void functions

void AVoidReturnFunction (int a) {

 int b = a + 1;

}

void AVoidReturnAndParameterFunction () {

 int b = 1;

}

int AVoidParameterFunction (void) {

 int b = 1;

 return b;

}

• Parameters are copies of the values but

never the variables themselves

– Modifications to them within the function will not

have any effect on the values outside it

– But if you want a modification, use a reference

to the variable

35

Modifying function

36

Modifying function

#include <iostream>

using namespace std;

void PreviousAndNext (int x, int& prev, int& next) {

 prev = x-1;

 next = x+1;

}

int main () {

 int x=100; int y=15; int z=8;

 PreviousAndNext(x, y, z);

 cout << "Previous=" << y << ", Next=" << z;

 return 0;

}

• Data structures

• Union of types

• Enumeration of types

• Definition of types

37

Create data types

• A data structure is a group of data elements

(not necessarily of the same type) grouped

together under one name

• Examples

38

Data structures

struct structure_name {

 member_type1 member_name1;

member_type2 member_name2;

member_type3 member_name3; ...

} object_names;

struct PlayerState {

 bool alive;

int amno;

} State1, State2;

struct PlayerState {

 bool alive;

int amno;

};

PlayerState State1;

PlayerState State2, State3;

• Manipulation of the members with the dot

operator

• Structures can be nested

Data structures

if (State1.alive && State2.alive && !State3.alive) {

 State1.amno += State3.amno / 2;

 State2.amno += State3.amno / 2;

 State3.amno = 0;

}

struct Player {

 float posx, posy;

 PlayerState state;

};

Player player1;

if (player1.posx == 0.0) player1.state.amno = 0;

• Allow one same portion of memory to be

accessed as different data types

• Example

40

Union of types

union union_name {

member_type1 member_name1;

member_type2 member_name2;

member_type3 member_name3; ...

} object_names;

union mix_t {

 double l;

 struct {

 int hi;

 int lo;

 } s;

 char c[4];

} mix;

• Create new data types to contain something

different that is not limited to the values that

fundamental data types may take

• Example

41

Enumeration of types

enum enumeration_name {

 value1,

 value2, ...

} object_names;

GameState currentState = InMenu;

while (!playerReady) update();

currentState = Running;

enum GameState {InMenu, Paused, Running};

• Definition of your own types based on other

existing data types

• Example

42

Definition of type

typedef existing_type new_type_name ;

typedef char C;

typedef unsigned int WORD;

typedef char field [50];

C mychar, anotherchar;

WORD myword;

field name;

End of lecture #1

Next lecture

Array, pointer, dynamic memory,

string and OO basics

